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A full numerical simulation based on spectral methods is used to investigate linearly 
accelerating and decelerating flows past a rigid sphere. Although flow separation does 
not occur at Reynolds numbers below 20 for a steady flow, in the linearly deceler- 
ating flow separation is observed at much lower Reynolds numbers with complete 
detachment of vorticity possible in certain cases. The existence of a large recirculation 
region contributes to the result that a negative viscous force on the sphere is possi- 
ble. The contribution of the pressure to the force includes a component that is well 
described by the inviscid added-mass term in both the accelerating and decelerating 
cases. The force on the sphere is found in general to initially decay in a power 
law manner after acceleration or deceleration ends followed by rapid convergence 
at later times to the steady state. For the cases examined this convergence is found 
to be exponential except for those in which the sphere is brought to rest in which 
case the convergence remains algebraic. This includes the special case of an infinite 
acceleration or deceleration where the free stream velocity is impulsively changed. 

1. Introduction 
In part 1 of this work (Chang & Maxey 1994), referred to subsequently as Part 1, 

we presented results of numerical simulations for axisymmetric, oscillatory viscous 
flow past a rigid sphere. Structural features of the flow were identified, including the 
changing vorticity distribution, flow separation and the steady streaming flow induced 
by the oscillations at finite Reynolds numbers. Also examined were the variations 
in the fluid force acting on the sphere, and of special interest was an attempt at the 
identification of an added-mass contribution to the force. It was found that if the 
history force is assumed to take the same form as the classical Basset history term 
(Basset 1888), the added-mass effect is the same at moderate Reynolds numbers and 
frequencies as for both inviscid, irrotational flow (Batchelor 1967) and for unsteady 
Stokes flow (Basset 1888; Maxey & Riley 1983). Mei, Lawrence & Adrian (1991) 
obtained a similar result from their numerical study of steady flow past a sphere with 
a superposed oscillatory perturbation to the flow. This result is also supported by 
the numerical simulations of Rivero, Magnaudet & Fabre (1991). Basic questions 
remain though as to the exact nature of the added-mass effect in unsteady flows at 
finite Reynolds numbers, and how it may be affected for example by the presence 
of separated flow. In unsteady Stokes flow it is known that the added-mass force is 
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affected by changes in time of a non-uniform ambient vorticity in the flow (Maxey & 
Riley 1993). 

In order to to determine the added-mass force without making assumptions about 
the quasi-steady and history components of the drag we have examined flows in which 
a uniform free stream is linearly accelerated (or decelerated) at a constant rate from 
a steady state. In such a flow the added-mass effect will be immediately apparent 
once the acceleration has started owing to the lack of significant history and velocity- 
dependent effects. This approach has been used independently by Rivero et al. (1991) 
and Rivero (1991) for accelerating flows. Our results from the present study not only 
confirm their results for the added-mass effect but extend them to include decelerating 
flows, and both accelerating and decelerating flows when the acceleration is removed 
and the free-stream velocity assumes a new steady value. Further we demonstrate 
the connection between the pressure distribution and the added-mass effect at finite 
Reynolds numbers. 

A second aim of this paper is to investigate the flow structure as it approaches 
a new steady state following a change in the free-stream conditions. This will 
give insight into the behaviour of the so-called history force which is governed by 
the relaxation of the flow to a steady state. The analytic results of Bentwich & 
Miloh (1978) and Sano (1981) state that the drag force on a sphere of radius a 
impulsively started from rest approaches the steady-state value at a rate proportional 
to t-ll2 for small t = 0(1), followed by a more rapid convergence proportional 
to t r2  at large t = O(Re-2) based on an assumption of low Reynolds numbers. 
Here the non-dimensional time is given as t = t’v/a2 where v is the kinematic 
viscosity. Lovalenti & Brady (1993~) extended this problem to include impulsive 
changes in velocity where the beginning and ending velocities may be other than 
zero and one respectively. From their analysis they found that the drag force 
behaved similarly for both the impulsively stopped and impulsively started sphere, 
the algebraic convergence at large t being due to destruction or construction of 
the wake region of the sphere. However, for impulsive jumps between non-zero 
values of the velocity, they found the convergence to be exponential at large t, this 
being attributed to the pre-existence of the wake region. Recently Lawrence & 
Mei (1995) have suggested that this latter exponential decay is only transitory for 
intermediate times and that in the long term the decay will be 0( tr2 ) ,  dominated 
finally by O(Re2) contributions to the drag force neglected in Lovalenti & Brady’s 
analysis. 

A common approach to representing the fluid force on a sphere held fixed in 
a unidirectional, but unsteady uniform flow is to write the force F as the sum of 
component parts. Rivero et al. (1991), following earlier authors, write for example 

dU 
dt 

F = FS + (1 + CM)mF- + FH,  

where FS is the quasi-steady drag force that would act on the sphere in a steady flow 
at the same instantaneous flow velocity U(t) .  The second term in (1.1) combines the 
inertial acceleration of the uniform flow and the added-mass effect, where r n F  is the 
mass of fluid displaced by the sphere. The third term FH is the history term. This 
formulation mirrors the results obtained by Basset (1888) for low Reynolds number 
motion in unsteady Stokes flow, for which the added-mass coefficient CM = 1/2 and 
the history term is 

FH = 6 n a ’ p L  g ( n v ( t  - t’))-‘/2dt’. 
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Here the sphere radius is a and p,v are respectively the dynamic and kinematic 
viscosities of the fluid. This result is based on the fluid being at rest initially, at 
t = 0 (Maxey & Riley 1983). Mei & Adrian (1992) have provided an extension to 
this formulation (1.1) for finite Reynolds number and obtained the history term in 
the form 

dU 
dtl 

FH = 6nap K ( t  - t')-dt' 

From previous simulation results (Mei et al. 1991) and asymptotic results at low 
Reynolds numbers they proposed a form of the history kernel K ( z )  that varied 
as T - ~ / ~  for short times, as in Basset's result, and as z-2 for longer times. This 
latter form would be consistent with the result of Sano (1981) for an impulsively 
started flow. However this form of K ( z )  was obtained by extrapolating results in 
the frequency domain for small amplitude perturbations of a steady flow and the 
result has been questioned by Lovalenti & Brady (1993b), who present an alternative 
form which decays exponentially for small changes in the free-stream velocity U(t). 
Some numerical simulations by Mei (1993), using a finite-difference scheme, do in 
fact show a general trend for exponential convergence to steady flow conditions in 
the final stage following an impulsive change in the free stream velocity. Prior to this 
the difference between the fluid force F and the final steady state value varies as an 
algebraic power in time. This conclusion though has been revised by Lawrence & 
Mei (1995) in light of more careful numerical simulations and theoretical arguments 
about the wake structure. They conclude that the convergence remains algebraic in 
the long term, typically as t-2. 

In this paper linearly accelerating and decelerating flows are studied numerically 
using the spectral method developed in Part 1 for the oscillating flow. We will begin by 
presenting the flow fields generated during and after the acceleration (or deceleration) 
of the free stream. The drag forces experienced by the sphere are then examined with 
emphasis on determining the nature of the added-mass effect. Finally, we will present 
results for the impulsively changed free-stream velocity in which we investigate not 
only the history effects on the drag force but also the evolution of the flow structure. 

In the following section a short summary is given of the equations of motion and 
the spectral methods used to solve them for the present problem. These are the same 
as in Part 1, where a more complete description may be found. 

2. Problem formulation 

the form 
The governing equations for an incompressible viscous flow may be written in 

2 
Re 

au 
- + u - v u  = -vp + -v*u 
at 

v - u  = 0. (2.2) 

The free-stream velocity is parallel to and in the direction of the axis of symmetry 
and is given as U= U(t)e(') .  All variables have been non-dimensionalized by the 
sphere radius a and maximum free-stream velocity rnaxlU(t)l = UO. The pressure p 
is scaled by pUi where p is the fluid density and the Reynolds number is defined as 
Re = 2aUo/v. Only linear accelerations and decelerations of the free-stream velocity 
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where cI and c2 are constants such that 0 < ci d 1, for i = 1,2; t ,  is the time at which 
an initial steady state has been reached for U ( t )  = cl, and t ,  is the time at which 
the acceleration is stopped. A, is the non-dimensional acceleration of the free stream 
and is here called the acceleration parameter or acceleration number. It is the ratio 
of the scale for the temporal acceleration in the flow to the scale for the convective 
acceleration term in (2.1); in dimensional form the flow acceleration is AcU;/a.  Note 
that for an accelerating flow A,  > 0 and c2 = 1 and for a decelerating flow A,  < 0 
with c1 = 1. 

Equations (2.1) and (2.2) are solved by introducing a scalar potential for the flow 
which ensures incompressibility and is of the form u=V x (Ce(6)) .  The pressure is 
eliminated by forming the equation for the vorticity W ( r , 0 , t )  = V x u, which has 
only one component, a@, in an axisymmetric flow. The vorticity equation in spherical 
coordinates is given by 

am, - 2 
- - (V x u  x o ) . e 6  + -D206 

at Re 

where the D2 operator is defined as D2 = V2 - l /(r2 sin2 6). The potential function C 
and vorticity o4 are related by 

(2.5) 
Hereafter the subscript 4 will be omitted for this vorticity component. 

The boundary conditions for flow past a rigid stationary sphere held fixed at the 
coordinate origin are given as 

2 D C = -04. 

ac 
dr C=O, -=O on r = l  (2.6) 

and at large distances from the sphere 

o = 0, c = iU(t)rsine as r co. 

The potential C is written as the sum of a potential function corresponding to a 
prescribed flow in the free stream and a potential corresponding to the disturbance 
flow produced by the presence of the sphere c: C = c + c. The prescribed potential 
is given as c = U(t)r  sin 0 so that o and c vanish far from the sphere. 

The non-dimensional drag force on the sphere is given as 

where F1 is the fluid force acting on the fixed sphere in the e(') direction parallel to 
the free-stream velocity. Since the flow is axisymmetric, there is no lift force. The 
drag force Cd may be written as the sum of a frictional component due to the viscous 
shear stress, Cj,  and a pressure component C,. On the surface of the sphere, because 
of the no-slip boundary conditions, the rate of strain is equal to half the local surface 
vorticity and the frictional component Cj is calculated from 

4 "  
Cj = -Re 1 o ( r  = 1,6, t )  sin2 0d6. 
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The pressure component C, is calculated from the momentum equation near the 
surface of the sphere as noted in Part 1. 

2.1. Numerical method 
A pseudospectral or collocation method is used to represent the flow variables spa- 
tially. This is based on the formulations of Orszag (1974) and Marcus & Tuckerman 
(1987), and described more fully in Part 1. In brief, the vorticity o and potential c 
are expanded as a Chebyshev polynomial series in the radial direction and as a sine 
series in the 6 direction. In physical space the flow variables are represented at the 
collocation points 

xn  
N + l  

0, = - for n = l , 2  ,..., N ,  

z,  = c o s - ' ( 2 n m / ~ )  for m = 0,1,. .. , M. 

The algebraic map r = 1 + L(l + z ) / ( b  - z )  with b = 1 + 2L/(rm - 1) is used to map 
the interval (-1,l) to (l ,rm) where r ,  is a finite large number. The parameter L is a 
scaling factor used to control the spacing of the grid points. 

Time integration is accomplished through an explicit second-order Adams-Bash- 
forth scheme for the nonlinear terms and an implicit second-order Crank-Nicolson 
scheme for the viscous linear terms. The calculations are made in physical r-space 
and spectral &space. After discretization, equations (2.4) and (2.5) with boundary 
conditions (2.6) are 

(2.10) 

(2.12) 

Wn+l = 0, c"+' = o at r = r,, 

F = (V x u x o) - e@). 

These equations are solved using a Green's function method (Chang 1992) after they 
are Fourier transformed in the &direction and the entire system is upper triangular 
in &space. Each radial equation is solved in physical-r-space using Chebyshev 
collocation methods and back substitution yields the final solution. 

For the cases studied, either 64 x 64 or 96 x 96 point grids are used with the 
stretch parameter set to values in the range 2 < L < 8. The outer radius r ,  was 
250 at low Reynolds numbers (Re < 1) and 50 otherwise. Tests were made to verify 
accuracy of the resolution and to check that the value of roo was sufficiently large. 
Typically a time step of O(lOU3) or smaller is used for the simulations. It was not 
uncommon to use a time step of O( at the beginning and end of the acceleration 
periods owing to the discontinuous nature of the free-stream acceleration at these 
times. 

2.2. Validation 
Simulation results have previously (Part 1) been checked for accuracy against steady 
and oscillatory flows through comparison with previous numerical, experimental 

(2.13) 
where the superscript n denotes the nth time level and F is given by 
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and theoretical results. In order to provide an initial test of the accuracy of our 
current simulations, we have compared our results with the Basset (1888) solution 
for unsteady Stokes flow. In this problem, the velocities are considered to be small 
and the accelerations large, so the convective acceleration term in the equations of 
motion may be neglected. Basset's estimate of the fluid force on sphere as the flow 
velocity accelerates from rest at a constant rate may be evaluated from (l.l), (1.2) 
and written in non-dimensional form as 

(2.14) 

where Re is the flow Reynolds number at the end of the acceleration interval. A 
comparison of (2.14) with the present numerical simulations for the values of A, = 1.0 
and Re = 0.1 over the non-dimensional time interval 0 < t < 1 shows that the relative 
difference while increasing over the interval is at most O(lOV4). Good agreement is 
also found with the higher-order results of Sano (1981) for the resultant force at low 
Reynolds numbers due to a flow started impulsively from rest, as is discussed later in 
this paper. 

3. Linearly accelerating flow 
In this section the flow structure and resulting fluid forces are examined for flows 

accelerating at a constant rate within the range IA,( < 2 and Re d 20. An initially 
steady flow is accelerated at a constant rate between t = t, and t = t ,  at which point 
the acceleration is removed and the flow relaxes to a new steady flow regime. A very 
short time step is used to computationally resolve the transient behaviour near t = t ,  
and t = t ,  where the acceleration changes rapidly. We begin by examining the flow 
structure for three different sets of simulations which illustrate many of the general 
features observed. 

3.1. Flow structure 
Typical streamfunction and vorticity contours for an accelerating flow are shown in 
figure 1 where the acceleration number A, = 1.0 and the flow Reynolds number 
increases from 5 initially, to 10. The flow is from left to right in the figures. The 
coordinate 6 = 0 corresponds to the rear stagnation point along the sphere axis 
and 6 = 180" is at the forward stagnation point. As the flow accelerates there is 
strong production of negative vorticity near the surface of the sphere, reinforcing the 
existing vorticity distribution, but this remains largely confined to a narrow region 
around the sphere. Advection of this enhanced surface vorticity is initially weak for 
this moderately strong acceleration, and it is only after the acceleration ceases that 
the vorticity diffuses away from the sphere and advection becomes more significant. 
Corresponding details of the surface pressure distribution and surface vorticity are 
shown in figure 2. The surface pressure k ( 6 )  is measured relative to the pressure at 
the forward stagnation point, 

k ( 6 )  = p(r = l,6) -p(l,n). (3.1) 

As the flow accelerates there is a favourable pressure gradient at all points on the 
sphere. There is a dramatic change in the pressure distribution as the acceleration 
is removed, as may be seen by comparing the data for t = t, - At and t = t, + At. 
This is associated with the added-mass effect discussed later. At time (t, + 1) the 
surface pressure has relaxed to a distribution closer to that of the new steady flow, 
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- 3 - 2  -1 0 1 2  3 - 3 - 2  -1 0 1 2  3 

FIGURE 1. Streamlines (left column) and vorticity contours (right column) for a free stream 
accelerating from U(t,) = 0.5 to U(t,)  = 1 with Re = 10 and A, = 1; (a) U ( t )  = 0.5, (b)  U ( t )  = 0.75, 
and (c) U ( t )  = 1. 
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RGURE 2. Surface pressure and vorticity distributions for a free stream accelerating from 
U(t , )  = 0.5 to U(t,)  = 1 with Re = 10 and A, = 1; (a)  surface pressure and ( b )  surface vorticity. 
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FIGURE 3 Streamlines (left column) and vorticity contours (right column) for a free stream 
deccelerating from U(t,) = 1 to U(t,) = 0.5 with Re = 10 and A,  = -1; (a) U ( t )  = 1, ( b )  
U ( t )  = 0.75, and (c) U ( t )  = 0.5 Broken line shows the separation streamline (left). Vortrcity 
contours are - - - -, positive; - -, zero; ___ , negative. 

with a mild adverse pressure gradient along the rear of the sphere, 0 < 8 < 90". The 
surface vorticity increases sharply during the acceleration : peak values are almost 
three times the initial steady-state value at the end of acceleration in cases where the 
instantaneous Reynolds number has doubled in value. The distribution also becomes 
nearly symmetric about the mid-plane at 8 = 90" during acceleration, indicating the 
diminished effect of advection of vorticity. By time (t ,  + 1) the surface vorticity is 
close to that for steady flow; the peak value is within 3% of the final steady flow 
value reported in Part 1. 

Streamline and vorticity contours for a decelerating flow with A, = -1 and 
an initial Reynolds number Re = 10, which decreases to Re = 5,  are shown in 
figure 3. For steady flows at these Reynolds numbers there is no separation but the 
streamlines show that quite quickly a separated flow region develops in response to 
the deceleration. The surface pressure and vorticity distribution are shown in figure 4. 
Soon after deceleration begins a strong adverse pressure gradient develops on the 
surface of the sphere. This is seen as a sharp change in k(B)  just after the deceleration 
begins, as shown by the data for t = t ,  and t = t, + A t ,  which is again associated 
with added-mass effects. Positive vorticity is generated on the rear portion of the 
sphere. This is confined to a region near the sphere surface which gradually extends 
further forward on the sphere. Further, the strength of the ambient negative vorticity 
associated with the initial steady flow becomes weaker. 

Within the separated flow region, enclosed by the separation streamline, there is a 
recirculating flow which on the surface of the sphere is the reverse of that for steady 
flow conditions. The separation point on the sphere corresponds to the location of 
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8 (deg) 8 (deg) 
FIGURE 4. Surface pressure and vorticity distributions for a free stream decelerating from U(t , )  

to U(t , )  = 0.5 with Re = 10 and A, = -1; (a) surface pressure and ( b )  surface vorticity. 
= 1  

zero surface vorticity due to the no-slip boundary conditions (2.6). It is clear then 
from figure 3 that the positive vorticity is confined within the separated flow region, 
growing in extent as the region expands. This process may be characterized by two 
length scales: I, the length of the separation bubble given by the radial distance from 
the sphere surface at which the separation point streamline connects with the 8 = 0 
axis, and 6, the thickness of the positive vorticity layer correspondingly defined as the 
radial distance from the sphere surface at which the zero vorticity contour connects 
with the 8 = 0 axis. Axial symmetry requires that w = 0 along the whole 8 = 0 axis; 
the zero vorticity contour is an envelope for the vorticity distribution. Table 1 shows 
different values of those length scales and the separation point angle 8, for various 
rates of deceleration, at the instant when the deceleration is removed after an elapsed 
time At. These are compared with a Stokes diffusive length scale 6, = ( v A ~ ) ” ~ .  For 
all the data in table 1 the final value of Re is half the initial value. 

For other values of A, and Re similar trends are observed distinguished mainly 
by whether the flow is accelerating or decelerating. For some of the decelerating 
flows investigated the separated flow region engulfs the sphere entirely, the ambient 
negative vorticity of the steady flow is completely detached from the sphere and the 
sphere is completely embedded in a region of positive vorticity. Examples of this are 
indicated in table 1. In the flows examined within this parameter range, we have 
found that if complete vorticity detachment occurs, this negative vorticity region is 
observed to eventually reconnect; these regions do not remain detached unless the 
final free-stream velocity, c2, is zero in which case a standing eddy is formed to the 
side of the sphere. 

As an illustration of how the flow vorticity returns to a steady state following a 
deceleration we include in figure 5 a sequence of vorticity contours for an initial 
Re = 10 and A, = -0.1. The deceleration is relatively weak and at the end of 
the deceleration phase, shown in figure 5(a), the free-stream velocity is 0.1 and 
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Re A,. At 6 6, 0s 1 

0.1 -0.1 5.0 
1 -0.1 5.0 
5 -0.1 5.0 

* * * * 
* * * * 
* * * * 

10 -0.1 5.0 0.12 1 .o 0.622 0.518 
15 -0.1 5.0 0.21 0.82 0.852 1.28 

-0.1 5.0 0.25 0.71 0.93 1 1.84 
* 3.16 

20 
0.1 -1 0.50 

1 -1 0.50 0.12 1 .o 0.932 0.40 
5 -1 0.50 0.31 0.45 2.04 1.67 

10 -1 0.50 0.30 0.32 2.20 2.07 
15 -1 0.50 0.29 0.26 2.17 2.37 
20 -1 0.50 0.28 0.22 2.20 2.61 
0.1 -2 

1 -2 0.25 0.28 0.71 2.93 1.13 
5 -2 0.25 0.30 0.32 1.80 

10 -2 0.25 0.28 0.22 2.14 
15 -2 0.25 0.26 0.18 2.41 
20 -2 0.25 0.25 0.16 2.64 

TABLE 1. Length of positive vorticity region at rear of sphere 6, Stokes diffusive length scale 
6, = (vt)-'/*, angle of separation (in radians) O,, and length of recirculation region 1 at the end 
of deceleration period with U(t,) = 0.5. A - denotes complete separation of the negative vorticity 
region. A * denotes no separation has occurred. 

* * 

0.25 * 2.2 * * 

the associated Reynolds number is 1.0. In this instance the sphere is completely 
surrounded by a region of positive vorticity with the negative vorticity detached. 
Following the deceleration negative vorticity is again produced on the upstream 
side of the sphere, and the negative vorticity contours reattach to the surface here. 
The separation point moves back towards the rear stagnation point as the positive 
vorticity weakens. Eventually the negative vorticity in the free stream reconnects with 
the newly generated vorticity, but even after an elapsed non-dimensional time of 8 
since the first frame the process is still not complete indicating that the return to the 
steady state is a slow process. The exact nature of the return to a steady state will be 
examined in further detail in the next section. 

3.2. Forces 
The forces acting on the sphere for A, = 1 and Re = 10 are shown in figure 6. The 
resultant fluid force cd, scaled as in (2.8), is the sum of the two components C, and Cf  
due to the surface pressure distribution and viscous shear stresses respectively. A large 
jump in both C, and C, occurs at t = t,, the time at which the acceleration period 
begins. Similarly, at the end of the acceleration period when t 2 t,, there is a large 
drop in both cd and C,. The large change in the value of C,  is reflected in the sudden 
change in the surface pressure prior to and just after the end of the acceleration 
shown in figure 2. These differences should correspond to added-mass effects since 
changes due to viscous diffusion of vorticity and velocity-dependent history terms in 
such a short time period are negligible. Indeed the viscous shear stress component C f  
exhibits no sharp changes either at the start or the end of the acceleration interval. 
The added-mass effect in an inviscid flow past a stationary sphere is strictly a pressure 
force proportional to the rate of acceleration of the free-stream velocity. The same is 
true for unsteady Stokes flow. There is an inertial component of value $dU/dt to C, 
due to the acceleration in the free stream U(t) .  The inviscid added-mass contribution 
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-6 -4 -2 0 2 4 6 

FIGURE 5. Vorticity contours of the flow following a deceleration, A, = -0.1, from Re = 10 to 
1.0 at various times after the deceleration ends at t , ;  (a) t = t,, ( b )  t = t ,  + 0.6, (c )  t = te + 5.4, 
( d )  t = t ,  + 9.4. Contours: - - - -, positive vorticity; - . -, zero vorticity; ~ , negative vorticity. 

is an additional idU/dt based on the usual estimate of an added-mass coefficient of 
as noted in (1.1). These combine to give a total inertial and added-mass contribution 
to c, of 

Both at the start and the end of the acceleration interval, the observed change in 
pressure forces matches the expected value for the inviscid added-mass effect. The 
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6.2 6.4 6.6 6.8 7.0 7.2 

t 
FIGURE 6. Drag force coefficients, C,, Cp,  and Cd us. time during acceleration period for Re = 10, 

A, = 1, U(t,)  = 0.5, U(t,)  = 1, t ,  = 6.4 and t ,  = 6.9; __ 1 ,  C,. - - - - - P ,  3 Cd. C . - . - 

change in C, at the start and at the end of acceleration, AC,, and AC,, respectively, 
seen in figure 6 agree with (3 .2)  to within 1% of Ci. 

Rivero (1991) observed a similar large change in the fluid force Cd on a sphere 
at the start of a linearly accelerating flow. These simulations were made at initial 
Reynolds numbers of 0.1, 10 and 100 and positive accelerations A, = 0.001, 0.01, 0.1, 
10 and 100, taking account of the scaling used here. A similar procedure was used to 
separate the inertial component of the fluid force. In each case the change matched 
the estimate (3.2) though the separation of Cd into components C, and C, was not 
made. 

We have extended our results to include both the start and the end of the accelera- 
tion and to include decelerating flows also. Table 2 shows values of A&, the change 
in the pressure coefficient immediately ( time unit) after acceleration has started, 
for different Reynolds and acceleration numbers. Corresponding changes AC,, in C, 
at the end of the acceleration period are also listed. The fluid forces for a decelerating 
flow with A, = -1 and Re = 10 are shown in figure 7 and are similar in character 
to those for the accelerating case. The added-mass effect is apparent in the sudden 
changes in C,; these too are reflected in the change in surface pressure shown in figure 
4(a) prior to and just after the start of the deceleration. It is worth noting that AC,, 
matches (3.2) even where flow separation has developed as a result of deceleration 
in the free stream. A comparison of tables 1 and 2 shows that for many of the 
decelerating flows listed a closed recirculating, separation bubble develops by the end 
of the deceleration interval, yet this has no apparent influence on AC,,. This is an 
indication that the same will be true at higher Reynolds numbers where a separation 
bubble is a feature of steady flow. 

In an inviscid irrotational flow, and in unsteady Stokes flow, the pressure distri- 
bution is solely responsible for the resultant added-mass force and is associated with 
a dipole potential for the flow. This gives rise to a surface pressure distribution, in 
dimensional form, 

1 dU 
-ppcosO- 

dt 
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FIGURE 7. Drag force coefficients, C,, C,, and cd us. time during deceleration period for Re = 10, 
A, = -1, U(t , )  = 1, U(t , )  = 0.5, t, = 6.455 and t, = 6.955; -, C,; - - - - 1 ,  C; - . - . - > C d .  

and a component due to the free stream 

dU 
-ap cos 8-, 

dt 
where U (  t )  is the free-stream velocity. Non-dimensionally, the pressure coefficient 
associated with this added-mass force is given as 

where p’( 0) is the dimensional surface pressure. 
In the present simulations the pressure is specified by a Fourier cosine series in 0 

as described in Part 1. To test whether or not the observed added-mass changes in 
C, are associated with a corresponding dipole potential term we examine the first 
Fourier coefficient in the cosine series for the surface pressure. Figure 8(a) shows 
the first Fourier coefficient of the surface pressure i l ( t )  for A, = 1.0 and Re = 10. 
The jumps at t ,  and t,, A h  and A h  respectively, agree with (3.3). Similarly, the 
Fourier cosine coefficient f ,  for the decelerating flow A, = -1 and Re = 10, shown 
in figure 8(b), also has corresponding jumps which agree with (3.3) at ts and t,. Other 
values of A f i  and Afq are given in table 2 for a range of accelerations and Reynolds 
numbers. None of the other Fourier coefficients that contribute to the drag force 
exhibit such a behaviour. Note that to avoid small, localized oscillations at t ,  and 
t, associated with the discontinuous acceleration, a very small but finite amount of 
time of 0(10-4) must be allowed to pass before exact values of C, and i , ( t )  can be 
obtained. This delay contributes to the slight discrepancy between the measured and 
the expected results. 

It is significant to note that throughout these flow changes both the Fourier sine 
series in 6 for the surface vorticity and the Fourier cosine series for the surface pressure 
are dominated by the first few terms in each series. No significant contribution comes 
from terms beyond the second harmonic. This is also a feature of the results of 
Dennis & Walker (1971) for steady flows past a sphere where spherical harmonics 
were used to represent the flow. There too at moderate to low Reynolds numbers 
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FIGURE 8. First Fourier coefficient of the surface pressure f ,  us. time during acceleration (decel- 
eration) period for Re = 10; (a) A, = 1.0, U(t,) = 0.5, U(t,) = 1.0, with t ,  = 6.4 and te = 6.9; 
(b)  A, = -1.0, U(t,) = 1.0, U(t,) = 0.5 with ts = 6.455 and te = 6.955. 

Re A, A c p S  ACpe A f ;  A f l  

0.1 1 2.11 -2.11 -3.17 3.16 

1 1 2.05 -2.05 -3.07 3.07 

10 1 2.02 -2.01 -3.01 3.02 

20 1 2.02 -2.02 -3.03 3.03 

0.1 2 4.22 -4.21 -6.33 6.32 

1 2 4.10 -4.09 -6.15 6.14 

10 2 4.07 -4.07 -6.12 6.10 

20 2 4.04 -4.04 -6.06 6.06 

0.1 -1 2.11 2.10 3.17 -3.16 

1 -1 -2.05 2.05 3.07 -3.07 

10 -1 -2.02 2.01 3.02 -3.02 

20 -1 -2.01 2.02 3.03 -3.03 

0.1 -2 -4.22 4.21 6.33 -6.32 

1 -2 -4.09 4.09 6.12 -6.14 

10 -2 -4.08 4.08 6.12 -6.12 

20 -2 -4.04 4.04 6.06 -6.06 

TABLE 2. Change in pressure drag component at the beginning and end of acceleration period AC, 
and ACpe, change in the first Fourier coefficient of the surface pressure coefficient at the beginning 
and end of acceleration period Afs and A k  for different Reynolds and acceleration numbers; 
U(t,) = 1 and U ( t e )  = 0.5 for A,  = -1 and -2; U(t,) = 0.5 and U(te)  = 1 for A, = 1, and 2. 

only the first few spherical harmonics contributed significantly to the surface vorticity 
distribution. This is an indication that the flow structure very close to the sphere 
is relatively simple. What is noteworthy is that this persists even for unsteady flow 
conditions where there is flow separation. 

Beyond the added-mass effect certain other features of the forces during and after 
the acceleration are noteworthy. For accelerated motion both Cf  and C,, discounting 
the added-mass contribution, grow as the instantaneous Reynolds number increases. 
At the end of the acceleration period C, is significantly higher than the eventual 
steady state value reached. For example, in the accelerated flow results of figure 6, 
Cf  = 2.46 at the end of the acceleration period compared to its eventual steady-state 
value of 1.43. A significant amount of time (in this example, just over 4 time units) 
elapses before Cd reaches the new steady value, indicating a significant history effect 
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t 
FIGURE 9. (cd - Ci)/Cj  us. time for t > t ,  at Re = 10, where C,S is the final steady-state drag force 
for c2 = 1 following the acceleration: - .. -, c1 = 0 and A, = 1.0; -.-, c1 = 0 and A, = 0.1; . . . . ., 
c1 = 0.5 and A,  = 1.0; -, CI = 0.5 and A, = 0.1. Times are relative to t ,  = 0 

while the flow continues to adjust. For decelerated motion both Cf and C, as well as 
the instantaneous Reynolds number decrease during the deceleration phase. In fact, 
as seen in figure 7 negative values of Cf may be attained even though the free-stream 
velocity remains positive. The force Cf is determined, as in (2.9), by the surface 
vorticity which is positive over an increasing portion of the sphere and is associated 
with the locally reversed flow on the sphere from the separation bubble. At the end of 
the deceleration, t = t,, the value of Cf is below its final steady-state value. Figures 9 
and 10 show how the drag forces approach steady-state values after after acceleration 
or deceleration has stopped for representative Reynolds numbers and acceleration 
numbers. Note that the drag forces continue to decay algebraically at large t when 
the free-stream velocity has decelerated to zero. 

4. Impulsive motion 
In order to further investigate the behaviour of the history drag force on a sphere 

we examine the special case where the free-stream velocity changes instantaneously 
from one constant value to another with an infinite acceleration. We allow only one 
change in velocity and both velocities are non-negative: 

1 U(t  < 0)  = c1, 
q t  2 0) = c2, 

0 d c1 d 1,o d c2 < 1. 
(4.1) 

There are only two possible cases: an impulsive jump from a lower velocity c1 to 
velocity U = c2 = 1 or an impulsive drop from U = c1 = 1 to a lower velocity 
c2. When the free-stream velocity changes impulsively, an infinite inertial force is 
generated instantaneously. Following the step change the value of cd eventually 
adjusts to the new steady-state value. In these results we focus on the short and 
intermediate term response during which cd adjusts to within 0.5-1% of its final 
value. Care was taken here to ensure good spatial resolution and verify that rco was 
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FIGURE 10. ICd - CJ/C: us. time for t > t, at Re = 10, where Cj is the corresponding steady-state 
drag force following the deceleration and Ci is initial drag force at c1 = 1: __ , c2 = 0.5 and 
A c -  - -0.1; - - - -, c2 = 0.5 and A,  = -1.0; - .  -, c2 = 0 and A,  = -0.1, - .. -, c2 = 0 and A,  = -1.0. 
Times are relative to t, = 0. 

large enough, since the zero-vorticity boundary condition there will eventually induce 
an exponential decay. For the cases where Re > 1 and c2 > 0 the minimum value of 
rCc is 50, and the outer boundary condition should not be a factor till t > 20. 

The first case considered is the equivalent of a sphere accelerating impulsively 
from rest to a constant velocity: U(t  < 0) = 0, U(t  3 0) = 1. Initial computational 
results for this problem have been given by Dennis & Walker (1972). Analytical 
solutions due to Sano (1981) and Lovalenti & Brady (1993~) to this problem for low 
Reynolds numbers indicate algebraic convergence of the drag force to the steady state 
proportional to t-'/2 for t up to O(Re) with a transition to algebraic convergence 
proportional to t-2 for t = 0(lW2). Figure 11 shows current results for low and 
moderate Reynolds numbers as well as Sano's analytic solution. Here we have used 
the computed steady-state drag coefficients given in Part 1 as references for the 
computed results. Current results indicate an algebraic convergence slightly faster 
than the analytical t-'j2 but which is valid for much larger t than suggested by the 
analytical solutions. This is followed by a more rapid algebraic convergence and then 
a final exponential decay at large times. Note too that this trend holds for moderate 
Reynolds numbers as well. Exponential convergence has been reported by Mei (1993) 
for the long term behaviour, though more recently Lawrence & Mei (1995) have 
obtained an approximate t-2 dependence in the final stage. 

For a flow in which the free-stream velocity changes impulsively from one constant 
value to another (non-zero) value, the low Reynolds number results of Lovalenti & 
Brady (1993a,b) indicate exponential convergence for later times. Figure 12 shows 
how the computed drag force approaches the steady-state force after the free-stream 
velocity impulsively jumps from a velocity less than one to U(t  2 0) = 1 for Re = 0.1 
and Re = 10. These results are qualitatively similar to the impulsively started case 
with the drag force exhibiting an initial algebraic decay to the steady state slightly 
faster than t-'/2 followed by a more rapid convergence at large t. That the behaviour 
for an impulsively started free stream and one in which the free stream changes from 
one constant velocity to another are similar in nature is somewhat surprising since 
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FIGURE 11. (Cd - Ci)/Cj us. time for an impulsively started free stream velocity where Cj is the 
, Re = 0.5; - 

.. - .. , Re = 5; - . . . -, Re = 10. Sano's analytical result scaled by the long term asymptotic values 
of this solution is shown, - -. 

final steady-state drag force at U = c2 = 1 : -, Re = 0.1; - - - - - , Re = 0.2; - . - . 
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RGURE 12. (Cd - Ci)/Ci us. time for a free-stream velocity impulsively raised from U = c1 to 
u = c2 = 1: ~ , c1 = 0.25 and Re = 0.1; - - - -, c1 = 0.25 and Re = 10; - . -, c1 = 0.5 and 
Re=O.l;- . .- ,cl  =0 .5andRe=10; - . . . - , c l  =0.75andRe=O.l;--- ,cl  =0 .75andRe=10.  

it is expected that the impulsively started case would take much longer to converge 
owing to the necessity for the wake region to both form and develop fully. 

An impulsively stopped free stream with U(t  c 0) = 1 and U(t  2 0) = 0 is much 
different than the impulsively started flow. Here, after the free stream is stopped, 
a large eddy is formed to the side of the sphere (figure 13) generating a negative 
drag force which decays in time as the fluid viscosity weakens the eddy through 
diffusion. Since the drag force is negative, how the absolute value of the drag force 
approaches zero is of interest. Figure 14 shows the behaviour of the drag force for 
different initial Reynolds numbers. As in the impulsively started case, the drag force 
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FIGURE 13. Streamlines at ts + 0.005 just after the free-stream velocity has been impulsively 
brought to rest, initially Re = 10. 
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FIGURE 14. ICdl/C,' us. time for an impulsively stopped free-stream velocity, Cj is the corresponding 
initial drag force at c1 = 1, the initial Reynolds numbers are : ___ , Re = 0.1; . . . . ., Re = 0.2; 

, Re = 0.5; - 3 .  -, Re = 5 ;  - . ' . -, Re = 10. 

initially decays at an algebraic rate slightly greater than t-1/2. However, this decay 
rate remains algebraic for large t ;  there is no evidence of exponential convergence 
for the impulsively stopped flow. This is a clear indication that impulsively started 
and stopped free streams yield different behaviour in these time intervals and that 
the destruction of the wake region strictly through diffusion is a much slower process 
than the construction of the wake region through convection and diffusion even in 
the low Reynolds number flow regime. 

Finally, figure 15 shows the computed drag forces for a sphere in which the 
free stream velocity impulsively drops to another non-zero value. As before, the 
convergence is initially algebraic followed finally by a rapid exponential convergence. 
In contrast to the previous example the free-stream velocity has been reduced here 
but not eliminated so that the existing wake structure is weakened but not completely 
dissipated. Both convection of vorticity by the flow and viscous diffusion continue to 
contribute to this process. 

Accurately determining the final long term relaxation of the drag force to the 
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t 
FIGURE 15. ICd - CJ/Cj vs. time for a free-stream velocity impulsively reduced from an initial 
c1 = 1, with corresponding drag force C;, to a lower value c2 with a final steady-state drag force 
C j ;  initial Re and c2 are : ---, Re = 0.1 and c2 = 0.25; - . -, Re = 0.1 and c2 = 0.5; - . . . -, 
Re = 0.1 and c2 = 0.75; . . . . ., Re = 10 and c2 = 0.25; - .. -, Re = 10 and c2 = 0.5; - - -, 
Re = 10 and c2 = 0.75. 

steady-state value is very difficult. The present results indicate an initial power law 
response and then a somewhat faster than algebraic decay during which the force 
adjusts to within 0.5-170 of its final value. Except for the impulsively stopped sphere 
there is no discernible ‘second power law’ before an exponential cut-off is reached. 
Beyond the influence of the outer boundary already mentioned the results in the 
final stage are sensitive to errors in determining Cj, used as the asymptotic reference 
value, and the accuracy-order of the time-stepping algorithm used in these long-term 
calculations. Here the scheme is second-order accurate, the minimum acceptable. 
Even allowing for possible influences of the outer boundary conditions, the results 
of figures 9 and 10 for accelerating and decelerating flows strongly suggest a faster 
than algebraic/exponential final relaxation to steady state in flows involving a change 
between non-zero velocities. The results also show that the viscous relaxation process 
does not persist indefinitely. One of the difficulties in calculating particle trajectories 
in a flow where a history term is included is the need to retain a long record of the 
particle acceleration relative to the surrounding fluid. There appears to be an effective 
finite cut-off to this process in many cases. 

5. Discussion 
Linearly accelerating and decelerating flow past a rigid sphere has been investigated 

numerically. In the accelerating flow case the surface-generated vorticity is confined to 
a region near the sphere at high acceleration numbers. At low acceleration numbers 
the vorticity is free to convect downstream of the sphere. In the decelerating flow, 
owing to the generation of an adverse pressure gradient, separation is observed at 
Reynolds numbers well below those at which separation occurs in a steady flow. In 
some cases, the flow completely detaches from the sphere with an inner reverse flow 
completely engulfing the sphere. Although the negative vorticity associated with the 
initial flow is free to convect downstream, in all cases studied this region reattaches 
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to the sphere after the deceleration period ends. At higher acceleration numbers 
the thickness of the positive, surface-generated vorticity layer created within the 
recirculation region matches the Stokes diffusion length 6,. However, this is not the 
case at low Reynolds or acceleration numbers. 

Negative viscous and pressure forces on the sphere are observed during the de- 
celeration period meaning that instead of retarding the flow, the drag forces act to 
maintain it even though the flow has not changed direction. In both the accelerating 
and decelerating flows the pressure component of the force exhibits behaviour that 
is well described by an inviscid added-mass effect. This result is confirmed through 
examination of the surface pressure component associated with this force and the 
structure of this surface distribution. Historically there has been much discussion, 
see for example Torobin & Gauvin (1959), as to whether added-mass is an appropri- 
ate concept outside of the context of potential flows especially where viscous, finite 
Reynolds number effects play a strong role. There has been much discussion too 
on how to define added-mass in general. For unsteady motion in the low Reynolds 
number Stokes regime the concept has a clear meaning, though the added-mass force 
will depend on the spatial variations in the underlying flow (Maxey & Riley 1983). 
The results here, at least for these Reynolds numbers, show that added-mass has a 
very clear significance and interpretation based on the pressure forces in the flow. 

The present data on the relaxation of the drag force to the steady state after 
acceleration were found to be insufficient to determine the exact nature of the history 
drag force. However, from the results for the impulsively changed free-stream velocity, 
we found that the Basset decay rate of t-'/2 is adequate in approximating the initial 
behaviour of the history drag forces with changes in the decay rate only occurring 
once the drag force was within a few percent of the final steady-state value. We have 
found that at later times, the convergence is more rapid and finally exponential for 
all but a sphere brought to rest, in which case the convergence was found to remain 
algebraic. This suggests that the effects of vorticity convection by the flow act to give 
a rapid convergence in the long time limit, even without the prior existence of a wake 
region. 
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